Preliminary communication

The preparation of $Ru_5C(CO)_{15}$ and $Os_5C(CO)_{15}$

C.R. EADY, B.F.G. JOHNSON, J. LEWIS and T. MATHESON

University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW (Great Britain) (Received June 27th, 1973)

SUMMARY

The carbido carbonyl complexes $\operatorname{Ru}_5 C(CO)_{15}$ and $\operatorname{Os}_5 C(CO)_{15}$ have been prepared and characterised.

Following the initial report by Braye and coworkers¹ of the synthesis and structural characterisation of the first transition metal carbonyl carbide $Fe_5C(CO)_{15}$ came reports of the preparation and X-ray analysis of the anion² $Fe_6C(CO)_{16}^{2-}$ and the neutral $Ru_6C(CO)_{17}^{3,4}$ and $Ru_6C(CO)_{14}$ (arene)^{3,5}. More recently the rhodium anion⁶ $Rh_6C(CO)_{15}^{2-}$ has been identified by full X-ray analysis and an improved synthetic route to $Fe_5C(CO)_{15}$ has been given⁷. In the case of the neutral $Ru_6C(CO)_{17}$ evidence⁸ has been presented to suggest that the source of the carbon atom is a carbonyl group whereas the carbon in the Rh_6C system apparently arises from $CHCl_3^{6}$. We now report the preparation and characterisation of the ruthenium and osmium analogues of $Fe_5C(CO)_{15}$.

Reaction of α -H₄Ru₄(CO)₁₂ with ethylene (10-12 atm) at 130°C for ~1 h yields a dark brown-orange-solution. After filtration and removal of solvent in vacuo a dark brown residue is obtained. Separation by column chromatography on silica using hexane as eluent gives at least eight products amongst which are Ru₆C(CO)₁₇ and Ru₅C(CO)₁₅. Yields of these materials are moderate and very low (30% and ~1%) respectively. Although no evidence has yet been obtained for the formation of the pentanuclear carbide from the direct pyrolysis of α -H₄Ru₄(CO)₁₂ it is likely that the ethylene plays no part in the formation of this derivative.

Pyrolysis of $Os_6(CO)_{18}$ ⁸ in an evacuated Carius tube at 255° gives a dark brown material. Extraction into ethyl acetate, followed by filtration through kieselguhr gives a yellow solution which after removal of the solvent yields $Os_5C(CO)_{15}$ as yellow crystals (yield ~40%). Alternatively the carbide may be obtained from the direct pyrolysis of $Os_3(CO)_{12}$ but in this case yields are low (~10%) and the reaction obviously proceeds via the intermediate formation of $Os_6(CO)_{18}$.

$\frac{Compound}{Fe_{s}C(CO)_{1s}a}$	v (CO) (cm ⁻¹)				
	2098w	2050s	2031s	2012m	1991m
Ru _s C(CO) ₁₅	·	2066vs	2034s	2016m	Ь
Os ₅ C(CO) ₁₅	_	2078vs	2038s	2019m	ь

 TABLE 1

 INFRARED SPECTRA OF M₅C(CO)₁₅ COMPOUNDS (CYCLOHEXANE) (2200-1600 cm⁻¹)

^aRef. 7. ^bA very weak absorption is observed in this region.

The infrared spectra of $\operatorname{Ru}_5C(CO)_{15}$ and $\operatorname{Os}_5C(CO)_{15}$ in the carbonyl stretching region (see Table 1) are related to that of $\operatorname{Fe}_5C(CO)_{15}$ recorded by Graham and coworkers⁷. Under electron impact the parent ion $\operatorname{M}_5C(CO)_{15}^+$ together with ions $\operatorname{M}_5C(CO)_{15-n}^+$ (n = 1-15) corresponding to the stepwise loss of fifteen CO groups are observed. As was observed in the mass spectrum of $\operatorname{Fe}_5C(CO)_{15}$ the most intense ion corresponds to the simple carbide M_5C^+ but unlike the iron complex fragmentation of this unit does not occur except for the formation of small amounts of Ru_4C^+ . In keeping with the enhanced stability observed with clusters of the 2nd and 3rd row transition metals the doubly-charged ions $\operatorname{M}_5C(CO)_{15}^{2+}$ and $\operatorname{M}_5C(CO)_{15-n}^{2+}$ are observed in relatively high abundance.

The synthetic routes employed in this work, particularly in the case of the osmium system, would again indicate that the source of the carbido-carbon is from the reduction of a coordinated carbonyl group. Pyrolysis of higher osmium carbonyl compounds based on Os_7 and Os_8 units also yields carbido complexes and these will be reported in due course. The chemistry of the "carbon atom" in these and other carbide systems is currently under investigation.

ACKNOWLEDGEMENTS

We thank Johnson, Matthey and Co. Ltd. for their generous loan of $RuCl_3$ and OsO_4 and the S.R.C. for financial support (C.R.E. and T.M.).

REFERENCES

- 1 E.H. Braye, L.F. Dahl, W. Hübel and D.L. Wampier, J. Amer. Chem. Soc., 84 (1962) 4633.
- 2 M.R. Churchill, J. Wormald, J. Knight and M.J. Mays, J. Amer. Chem. Soc., 93 (1971) 3073.
- 3 B.F.G. Johnson, J. Lewis and I.G. Williams, J. Chem. Soc. (A), (1970) 901.
- 4 A. Sirigu, M. Bianchi and E. Benedetti, Chem. Commun., (1969) 596.
- 5 R. Mason and W.R. Robinson, Chem. Commun., (1968) 468.
- 6 V.G. Albano, M. Sansoni, P. Chini and S. Martinengo, J. Chem. Soc. (Dalton), (1973) 651.
- 7 R.P. Stewart, U. Anders and W.A.G. Graham, J. Organometal. Chem., 32 (1971) C49.
- 8 C.R. Eady, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 37 (1972) C39.